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Abstract. We propose an Eulerian description of the bounce-back boundary con-
dition based on the high-order implicit time marching schemes to improve the
accuracy of lattice Boltzmann simulation in the vicinity of curved boundary. The
Eulerian description requires only one grid spacing between fluid nodes when
the second-order accuracy in time and space is desired, although high-order ac-
curate boundary conditions can be constructed on more grid-point support. The
Eulerian description also provides an analytical framework for several different in-
terpolation based boundary conditions. For instance, the semi-Lagrangian, linear
interpolation boundary condition (Bouzidi et al. [Phys. Fluids 13, 3452 (2001)])
is found to be a first-order upwind discretization that changes the time marching
schemes from implicit to explicit as the distance between the fluid boundary node
and the solid boundary increases.

1 Introduction

The most popular boundary condition for the lattice Boltzmann equation (LBE) method is the
bounce-back scheme. In the standard bounce-back scheme, the incoming particle distribution
function reflects back at the solid boundary during the streaming step, which makes the res-
olution of complex solid boundaries straightforward. Although simple to implement, it is only
first-order accurate unless the solid boundary is located exactly half-way between the bound-
ary fluid node and the off-lattice node inside the solid [1]. High-order boundary conditions for
curved solid boundaries have been proposed to address this issue over the past decade [2–5].
Of particular interest is the interpolated bounce-back scheme proposed by Bouzidi et al. [2] for
its stability and simple implementation. It is basically a method of backward characteristics;
we move backward from the current fluid boundary node to search for the location where the
particle distribution function at the previous time step resided. The accuracy of the scheme
relies heavily on the interpolation scheme used to spatially approximate the value of the particle
distribution function. While higher-order interpolations can easily improve the spatial accuracy,
the scheme is inherently first-order accurate in time.

The goal of the present work is to present an alternative way to construct high-order bounce-
back schemes. Instead of moving backward to find the previous location, we solve the pure
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advection equation at the fluid boundary nodes, noting that the streaming step is the exact
solution of the pure advection equation. This not only enables use of high-order time and space
discretizations on a given number of participating fluid boundary nodes but facilitate accuracy
and stability analysis of the boundary conditions. This approach may be viewed as an Eulerian
description of the bounce-back schemes, because the frame of reference is fixed at the fluid
boundary nodes rather than it follows the particle distribution function.

The paper is organized as follows. In Sect. 2, derivation of LBE from the discrete Boltz-
mann equation (DBE) is presented. Sect. 3 begins with an Eulerian bounce-back scheme for
curved boundaries. Detailed discretized forms of the first- and second-order accurate boundary
conditions are examined. In Sect. 4, we apply the boundary conditions to the two-dimensional
Couette flow to test the performance and characteristics of different boundary conditions. Con-
cluding remarks are made in Sect. 5.

2 Lattice Boltzmann Equation

DBE with Bhatnagar-Gross-Krook (BGK) [6] model can be written as

∂fα

∂t
+ eα · ∇fα = −fα − feq

α

λ
+

(eα − u) · Fα

c2
s

Γα, (1)

where fα is the particle distribution function, eα is the microscopic particle velocity, u is the
macroscopic velocity, ρ is the density, cs is a constant, λ is the relaxation time, the equilibrium
distribution function feq

α is given by
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]
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tα being a weighting factor, and Γα = feq
α /ρ. Fα accounts for the momentum transfer at moving

solid boundary in the direction of eα or averaged external forces such as gravity.
LBE is obtained by discretizing Eq. (1) along characteristics over the time step ∆t: [7]

fn+1
α (j)− fn
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t
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The time integration in [t, t + ∆t] is coupled with the space integration in [j − eα∆t, j]. Note
that the discretization on the left-hand side of Eq. (3) is not unique, although it is the best
approximation when (j− eα∆t) falls exactly on the lattice node.

Suppose the solid boundary is located in [j− eα∆t, j] and the information on the unknown
particle distribution is provided by a boundary condition. Application of the trapezoidal rule
for second-order accuracy and unconditional stability leads to

fn+1
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α (j− eα∆t) = − fα−feq
α
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α

2τ |n+1
(j) (4)

+∆t
2

(eα−u)·Fα

c2
s

Γα|n(j−eα∆t) + ∆t
2

(eα−u)·Fα

c2
s

Γα|n+1
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where the nondimensional relaxation time τ = λ/∆t and is related to the kinematic viscosity
by ν = τc2

s∆t.
Here, we introduce the modified particle distribution function f̄α and equilibrium distribu-

tion function f̄eq
α to facilitate computation:

f̄α = fα + fα−feq
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Eq. (5) can then be recast in a simpler form:

f̄n+1
α (j)− f̄n

α (j− eα∆t) = − 1
τ + 0.5

(
f̄α − f̄eq

α

) |n(j−eα∆t) + ∆t
(eα − u) · Fα

c2
s

Γα|n(j−eα∆t), (6)

where the nondimensional relaxation time τ = λ/∆t and is related to the kinematic viscosity by
ν = τc2

s∆t. We note that although Eq. (6) appears to be explicit in time, it is fully implicit for
the relaxation term and the intermolecular force terms alike and, therefore, is unconditionally
stable and second-order accurate. Eq. (6) is solved in two steps away from solid boundaries:

Collision step

f̄n
α (j− eα∆t) = f̄n

α (j− eα∆t)− f̄α − f̄eq
α

τ + 0.5
|n(j−eα∆t) + ∆t

(eα − u) · Fα

c2
s

Γα|n(j−eα∆t) (7)

Streaming step
f̄n+1

α (j) = f̄n
α (j− eα∆t). (8)

The density and the momentum can be computed by taking the zeroth and first moments of
the modified particle distribution function:

ρ =
∑

α f̄α, (9)

ρu =
∑

α eαf̄α + ∆t
2

∑
α Fα.

The streaming step can be regarded as a Lagrangian approach in that a group of particles
represented by the particle distribution function move along characteristics [8]. The perfect shift
poses no stability and accuracy issues because it involves neither phase nor amplitude error.
Since the perfect shift is the exact solution of the pure advection equation, the Lagrangian
description given by Eq. (8) can alternatively be expressed in an Eulerian framework shown
below

∂f̄α

∂t
+ eα∇f̄α = 0. (10)

Second-order accurate advection schemes need to be used to discretize Eq. (10) in order to main-
tain the overall second-order accuracy of the LBE method. The bar for the particle distribution
function will be dropped hereinafter.

3 Curved Boundary Conditions

Fig. 1(a) shows the schematics of bounce-back boundary conditions in the direction of the mi-
croscopic velocity eα. It is desired that the particle distribution function fα at the boundary
fluid node j is calculated from the particle distribution function fα∗ moving in the opposite
direction under the assumption that it is reflected back at the solid boundary. q is the dimen-
sionless distance between the boundary fluid node and the solid boundary. The standard link
bounce back scheme is realized for q = 1/2, in which case the solid boundary is located half way
between the boundary fluid node j and the off-lattice location j−eα∆t. For q 6= 1/2, interpola-
tion needs to be introduced. Bouzidi et al. [2] proposed the interpolated bounce-back schemes
based on the method of characteristics. From the geometrical point of view, we move backward
from the node j relative to the particle distribution function fα and locate the position that fα

sat on at the previous time step. Once the location is found, fα can be interpolated with the
values at the neighboring nodes.

Alternatively, we place an imaginary node at (j− 2q∆x) inside the solid, which is separated
from the node (j) by 2q∆x and is a reflection of the node (j) around the solid boundary as
illustrated in Fig. 1(b). The presence of the solid boundary is ignored. Accordingly, fα(j−2q∆x)
is identical to fα∗(j) and is assumed to continuously vary as it travels past the solid boundary.
With two grid points and continuity of the solution, the standard time and space discretizations
can be applied to Eq. (10).
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3.1 First-order accurate schemes in space

Application of the finite difference approximation to Eq. (10) with two grid points (j) and
(j− 2q∆x) yields the first order accurate schemes in space.

[2qfn+1
α (j)− 2qfn

α (j)] = −(1− θ)[fn+1
α (j)− fn+1

α (j− 2q∆x)]− θ[fn
α (j)− fn

α (j− 2q∆x)], (11)

where θ = [0, 1] and e∆t/∆x = 1 is assumed. For θ = 1, the scheme reduces to the explicit
upwind scheme but can be singular as q approaches zero. The maximum stable θ is found to
be θ = min(1, 2q), for which Eq. (11) becomes

fn+1
α (j) =

{
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2 .

(12)
Eq. (12) is the implicit upwind with respect to the microscopic velocity eα when q < 1/2 and
explicit upwind when q > 1/2. By noting that the grid point (j − 2q∆x) is a mere reflection
of a point (j), and fα(j − 2q∆x) is equivalent to fα∗(j), Eq. (12) can be expressed with the
unknowns at the single fluid boundary node (j);

fn+1
α (j) =

{
2qfn

α∗(j) + (1− 2q)fn+1
α∗ (j), q < 1

2 ,
1
2q fn

α∗(j) + (2q−1)
2q fn

α (j), q > 1
2 .

(13)

It is interesting to note that Eq. (13) is the linear interpolation scheme of Bouzidi et al. [2]
due to fn+1

α∗ (j) = fn
α∗(j− eα∗∆t). Therefore, the linear interpolation scheme of Bouzidi et al.

behaves like a first-order upwind discretization that changes the time marching schemes from
implicit to explicit as the distance between the fluid boundary node and the solid boundary
increases.

In general, solving for fn+1
α (j) gives

fn+1
α (j) =

θ

(2q + 1− θ)
fn

α∗(j) +
(1− θ)

(2q + 1− θ)
fn+1
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fn

α (j). (14)

Eq. (14) becomes second-order accurate in time only if θ = 1/2 (mid-point rule), but still
remains first-order accurate in space.

3.2 Second-order accurate schemes in space

To derive second-order accurate schemes, the linear Galerkin finite element approximation is
applied to Eq. (10) for two grid points (j) and (j− 2q∆x) [9].
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3 fn

α (j) + 2q
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where θ = [0, 1]. Solving for fn+1
α (j) gives
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For θ = 1/2, Eq. (16) is second-order accurate both in time and space. The maximum stable θ
for the second-order schemes is then θ = min(2/3, 4q/3).
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(17)



Will be inserted by the editor 5

4 Numerical Test

We carry out a simple test for the unsteady Couette flow, for which the analytical solution is
available. Fig. 2 shows the error of the difference boundary conditions versus the distance p
from the solid boundary. Periodic boundary conditions are prescribed in the horizontal direction
and 40 grid points are used in the vertical direction. The top boundary is moving at constant
speed. The nondimensional relaxation time is fixed at τ = 1/2. The line with filled square is
the result obtained by using the linear scheme of Bouzidi et al. For q less than 1/2, the error
decreases fast as the distance increases. This regime corresponds the implicit upwind. The error
then stays at approximately the same value but abruptly increases as q approaches unity. It is
clear that the linear interpolation scheme is discontinuous at q = 1 and non-smooth at q = 1/2,
which may give rise to oscillations in the stress distribution along the curved boundary. The
line with filled delta is the result obtained by using the second order scheme in space and time
Eq. (16). It has slightly higher error than the linear scheme of Bouzidi et al., but the error is
continuous at q = 1 and smooth at q = 1/2. The line with filled gradient is the result obtained
by using the scheme Eq. (12) that is first order in space and second order in time. It has higher
error than the linear scheme of Bouzidi et al., but the error exhibits smooth behavior. The line
with hollow circle is the result from the scheme that is second order in space but first order in
time, which also has discontinuity at q = 1.

Generally, the error of both first- and second-order schemes is reduced as θ → 1, i.e., as the
scheme becomes more explicit in time, in which case the scheme is only conditionally stable
for θ < 1/2 and the maximum stable θ becomes a function of the distance from the boundary.
The second-order schemes slightly better perform than the first-order schemes at the same θ in
terms of accuracy. The choice of θ = 1/2 results in second-order accuracy in time and provides
smooth solution at q = 1/2 and continuous solution at q = 1.

5 Concluding Remarks

By applying the general time marching scheme to the streaming step, we were able to construct
both first- and second-order accurate bounce-back schemes for curved boundaries. The first-
order schemes were derived by applying the standard finite difference approximation, and the
second-order schemes were derived by applying the Galerkin finite element approximation in
one-dimension. It has been shown that the linear scheme of Bouzidi et al. is a special case
of the first-order accurate schemes, which changes its type from implicit to explicit as the
distance between the fluid node and the boundary increases. This causes non-smooth and
discontinuous transition in the error distribution and may lead to oscillations in the stress field
along the curved boundary. Numerical test suggests that the fixed time marching scheme, in
particular, the mid-point rule performs better in terms of smoothness and continuity in the
error distribution.
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Fig. 1. (a) Schematic of the interpolated boundary conditions in the direction of eα. (j) is the fluid
boundary node and (j− eα∆t) is the off-lattice node. (b) fα(j− 2q∆x) is a reflection of fα∗(j).

Fig. 2. L1 norm versus the distance q from the solid boundary.
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